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ABSTRACT

A noise suppression algorithm with high speech quality
based on weighted noise estimation and MMSE STSA
is proposed. The proposed algorithm continuously up-
dates the noise estimate by noisy speech weighted in ac-
cordance with an estimated SNR. The spectral gain is
modified with the estimated SNR so that it can better
utilize the improvement in noise estimation. Subjective
evaluation results show that five-grade mean opinion
scores of the new algorithm are improved by as much
as 0.93 and 0.35, compared with the original MMSE
STSA and the EVRC noise suppression algorithm, re-
spectively.

1. INTRODUCTION

Applications of speech coding and speech recognition
have been exploding these days. Among these are cel-
lular phones and car navigation systems, to name a few.
One of the challenges in those applications is that they
are often used in noisy environment. The speech qual-
ity is seriously degraded in noisy environment, resulting
in uncomfortable communication or a lower recognition
rate. This is because speech coding and speech recog-
nition have been developed in noise-free environment.
A remedy for this problem is a noise suppressor.

A variety of noise suppression algorithms can be
found in the literature [1]. Most of the noise sup-
pression algorithms are based on STSA (short time
spectral amplitude) analysis. STSA is most widely
used for its computational advantage. Among others,
MMSE (minimum mean square error) STSA proposed
by Ephraim and Malah [2] is the most popular STSA
based algorithm. It minimizes the mean squared error
of the estimated short time spectral amplitude. It is re-
ported that MMSE STSA can provide good noise sup-
pression without unpleasant residual noise called “mu-
sical noise” [3, 4].

Another STSA-based popular algorithm is the one
employed for EVRC (Enhanced Variable Rate Codec)
[5] which is the North American CDMA digital cellular
phone standard. This is the most successful algorithm
whose quality has been proven to be good through com-
mercial products. Nevertheless, the quality may not be

sufficiently good for a wide range of SNRs which were
not given much attention when it was standardized.

This paper proposes a noise suppression algorithm
with good speech quality for a wide range of SNRs. The
proposed algorithm continuously estimates the noise
with a noisy speech weighted by an estimated SNR.
This makes more accurate SNR estimate available for
gain calculation, resulting in good speech quality and
sufficient noise suppression simultaneously. The spec-
tral gain is modified so that the improved noise esti-
mation can be utilized more effectively.

2. CONVENTIONAL ALGORITHM

2.1. MMSE STSA[2]

Figure 1 shows the structure of the original MMSE
STSA. It mainly consists of six functions; short-time
Fourier analysis, noise estimation, a posteriori and a
priori SNR estimation, spectral gain calculation and
short-time synthesis.

Assuming that the clean speech s(t) is degraded by
an additive noise d(t), the noisy speech x(t) is given by

x(t) = s(t) + d(t), (1)

where t is a time index. In short-time Fourier analysis,
the noisy speech x(t) is first segmented into frames of
M samples. An analysis window with a 50 % overlap is
applied to the segmented noisy speech xn(t) in frame n.
The discrete Fourier transform of the windowed noisy
speech is computed to output its spectral amplitude
|Xn(k)| and phase � Xn(k), where n and k refer to the
analysis frame and the frequency bin index. Noise sup-
pression is applied only to the spectral amplitude of
the noisy speech in each frequency bin. The amplitude
|Xn(k)| of the noisy speech is multiplied by a spectral
gain Gn(k) to obtain the amplitude |Yn(k)| of the en-
hanced speech. In short-time synthesis, the enhanced
speech spectrum Yn(k) is first constructed with � Xn(k)
and |Yn(k)|. After the inverse discrete Fourier trans-
form of Yn(k) is calculated, the enhanced speech yn(t)
is obtained by performing the overlap-add processing.

The spectral gain is calculated with an estimated a
priori SNR ξ̂n(k) and a posteriori SNR γ̂n(k). Their
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Figure 1: Structure of the conventional noise suppres-
sion (MMSE STSA).

estimates are obtained based on the estimated noise
power spectrum λn(k) which is calculated from the
spectral amplitude of the noisy speech in the first non-
speech period.

2.2. Problem in Noise Estimation

The original MMSE STSA estimates the noise power
spectrum based on the noisy speech only in the first
nonspeech period where the pure noise is available.
This means that, for a nonstationary noise, a change
in noise characteristics cannot be tracked and the en-
hanced speech quality becomes poor.

As a continuous noise estimation which has the track-
ing capability, a noise estimation method based on min-
imum statistics [6] is widely used. The minimum value
of the smoothed noisy speech power within a finite
time-window length LMS is used as the estimated noise.
Because of the statistical nature, a larger LMS pro-
vides more accurate noise estimation for a stationary
noise. However, the tracking capability for a nonsta-
tionary noise is degraded. A short window, on the other
hand, may introduce overestimation which results in
poor speech quality for high SNRs, although it achieves
better tracking capability. As a result, there is a trade-
off in the selection of LMS. Therefore, it is not easy to
select an appropriate window length for good tracking
capability without overestimation.

3. PROPOSED ALGORITHM

To achieve good tracking capability without overesti-
mation for various nonstationary noise sources, the pro-
posed noise suppression algorithm employs a noise esti-
mation with a weighting factor based on the estimated
SNR. The weighting factor makes continuous noise esti-
mation possible without overestimation even in speech
periods. As a result, the weighted noise estimation
tracks the change of the noise characteristics in both
speech and nonspeech periods. To obtain a suitable
spectral gain for the new noise estimation, the spectral
gain is modified in accordance with the SNR. Figure 2
shows the structure of the proposed noise suppression.
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Figure 2: Structure of the proposed noise suppression.

3.1. Weighted noise estimation

The weighted noise estimation mainly consists of three
steps; SNR estimation, weighting factor calculation and
averaging. The noisy speech is weighted by a weighting
factor calculated based on the estimated SNR. The es-
timated noise is obtained as an average of the weighted
noisy speech.

In the first step, the estimated SNR γ̃n(k) is ob-
tained from the power spectrum of the noisy speech
|Xn(k)|2 and the estimated noise λn−1(k) as follows.

γ̃n(k) =
|Xn(k)|2
λn−1(k)

(2)

In the second step, the weighting factor Wn(k) is
calculated by

Wn(k) =




1, γ̃n(k) < γ̃1
γ̃n(k)−γ̃2

γ̃1−γ̃2
, γ̃1 ≤ γ̃n(k) ≤ γ̃2

0, γ̃2 < γ̃n(k)
, (3)

where γ̃1 and γ̃2 are constants. This nonlinear function
is designed such that the weighting factor is almost in-
versely proportional to the estimated SNR. Overesti-
mation for high SNRs does not happen by appropri-
ately suppressing the contribution of the noisy speech
to the estimate.

The weighted noisy speech zn(k) and its average
λn(k), which is used as the estimated noise, are given
by

zn(k) = Wn(k)|Xn(k)|2, (4)

λn(k) =
trace{Zn(k)}
Ψ(Zn(k))

, (5)

where

Zn(k) =




[zn(k), Z̃n−1(k)], n ≤ Tinit

[zn(k), Z̃n−1(k)], γ̃n(k) < θZ

Zn−1(k), otherwise

, (6)

Z̃0(k) = 01×(LZ−1), (7)

Z̃n(k) = Zn(k) [ ILZ−1 0T
1×(LZ−1)]

T . (8)



Table 1: Parameters for proposed noise suppression.

Parameter Value Parameter Value
M 128 Tinit 4 frames
LZ 20 θG 10 dB
γ̃1 0 dB Gmod −1.0 dB
γ̃2 10 dB Gfloor −6.8 dB
θZ 7 dB

Ψ(Zn(k)) is the number of non-zero elements in Zn(k)
and trace{·} is an operator to take the sum of its diago-
nal elements. LZ and ILZ−1 are the number of samples
for the average and the identity matrix of size LZ − 1,
respectively. (6) means that Zn(k) is updated only
when the estimated SNR is lower than a threshold θZ ,
or the frame index is smaller than or equal to Tinit.
An inappropriate weighted noisy speech sample by an
unreliable SNR estimate is eliminated by θZ to obtain
a better value of λn(k). Wn(k) = 1 for 0 < n ≤ Tinit

under the assumption that the speech does not start in
the first Tinit frames. Noise estimation is performed in-
dependently for each bin, enabling more precise results
depending on the SNR at each bin.

3.2. Spectral gain modification

The spectral gain is modified in two ways; conditional
scaling and limitation. Conditional scaling further sup-
presses the residual noise for high SNRs resulting in
clearer enhanced speech. The spectral gain Gn(k) is
multiplied by a scaling factor Gmod only when the es-
timated a priori SNR ξ̂n(k) is smaller than a threshold
θG. Gmod < 1 makes the value of Gn(k) smaller to
further suppress the noise for low SNRs.

The minimum value of the spectral gain is limited
with Gfloor. If Gn(k) is smaller than Gfloor, the origi-
nal spectral gain Gn(k) is replaced with Gfloor. There-
fore, excessive suppression, which causes speech distor-
tion, can be avoided.

4. EVALUATION

The proposed noise suppression algorithm was com-
pared with the conventional noise suppression algo-
rithms in terms of noise estimation accuracy and sub-
jective quality of the enhanced speech. Both speech
and noise had been sampled at 8 kHz before they were
digitally mixed to generate the noisy speech. Four
kinds of background noise sources (babble, office, street
and vehicle) were used. Hamming window was used as
the analysis window. In MMSE STSA, 0.98 and 0.20
were used for the weighting factor α of decision-directed
estimation and the probablity q of signal absence, re-
spectively. Other parameters are shown in Table 1.
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Figure 3: Original speech and Estimation error.

4.1. Objective evaluation for noise estimation

Noise estimation accuracy was evaluated frame by frame
based on the normalized estimation error εn given by

εn = 10 log10

(∑M−1
k=0

∣∣|Dn(k)|2 − λn(k)
∣∣∑M−1

k=0 |Dn(k)|2

)
. (9)

For the Minimum Statistics, LMS = 50 is used as spec-
ified in [6]. The initial averaging, which is the original
noise estimation used for the MMSE STSA, estimates
the noise power spectrum in the initial 20 frames.

Figure 3 shows the normalized estimation error of
the evaluated noise estimation methods for the 5-dB
babble noise with the corresponding clean speech. The
proposed noise estimation (Prop.) is clearly more ac-
curate, compared with either the Minimum Statistics
(Min. Stat.) or the initial averaging (Init. Ave.).

4.2. Subjective evaluation

A listening test was carried out for the proposed method,
the original MMSE STSA combined with the Minimum
Statistics and the EVRC noise suppression (EVRC/NS).
A five-grade MOS (Mean Opinion Score) based on the
absolute category rating [7] was used in the test. Twelve
listeners evaluated the noise-suppressed speech which
was encoded and decoded by the EVRC. Each listener
scored between one and five, with five being the best.
Six speech signals were used as the clean speech. The
noise was added to the speech with different SNRs
(0, 5, 10 and 15 dB) to produce the noisy speech.

Figure 4 shows the listening test result. Scores of
the proposed method are higher than those of the orig-
inal MMSE STSA and the EVRC noise suppression in
most conditions. The difference between the scores of
the proposed algorithm and those of the original MMSE
STSA is statistically significant under 70 % of all tested
conditions. The maximum difference was 0.93. When
the proposed method is compared to the EVRC noise
suppression, the difference of their scores is statistically
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Figure 4: Results of listening test with codec.

significant under 25 % of all tested conditions. The
maximum difference was 0.35. Similar results were also
obtained in the test without codec [8].

5. CONCLUSION

A noise suppression algorithm based on weighted noise
estimation and MMSE STSA has been proposed. The
proposed algorithm continuously updates the noise es-
timate by noisy speech weighted in accordance with
an estimated SNR. The spectral gain is modified with
the SNR so that it better fits the new noise estimate
for higher speech quality. In the subjective evaluation
with a five-grade mean opinion score (MOS), the scores
of the proposed algorithm are improved by as much
as 0.93 and 0.35, compared with the original MMSE
STSA and the EVRC noise suppression algorithm, re-
spectively. Under 90 % of all tested conditions, the
proposed algorithm outperforms either or both of the
conventional algorithms with a statistically significant
MOS difference.
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